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Abstract

We study a diffusive energy-balance climate model,
governed by a nonlinear parabolic partial differential
equation. Three positive steady-state solutions of this
equation are found; they correspond to three possible
climates of our planet: an interglacial (nearly identical
to the present climate), a glacial, and a completely ice-
covered earth. We éonsider also models similar to the main
one studied, and determine the number of their steady states.
All the models have albedo continuously wvarying with latitude
and temperature, and entirely diffusive horizontal heat
transfer. The diffusion is taken to be nonlinear as well as
linear. -

We investigate the stability under small perturbations
of the main model's climates. A stability criterion is
derived, and its application shows that the "present climate"
and the "deep freeze" are stable, whereas the model's glacial
is unstable. A variational-priﬁciple is introduced to confirm
the results of this stability analysis.

We examine the dependence of the number of steady states
and of their stability on the average solar radiation. The
main result is that for a sufficient decrease in solar radia-
tion (about 2 percent) the glacial and interglacial solutions
disappear, leaving the ice-covered earth as the only possible

climate.
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1. Introduction

The cdncept of a élimate is one of those abstractions
which appears to be self-evident to the layman, but is by
no means well defined scientifically. The intuitive idea
of a climate has two aspects:
(a) the most important features of atmospheric phenomena;
{(b) the average behavior of these phenomena over a suitably

long time interval and over sufficiently large areas.

The difficulties start when one tries to give a precise
meaning to the key words "most important", "suitably long"
and "suitably large”. We start with "suitably long";
clearly, a year is an absolute lower bound for a reasonable
4averaginq time interval, since daily and seasonal variations
should be excluded. To decide over how much longer than é
yéar.thé averaging should be performed, one has ﬁo loock at
the record. There are three kinds of records: instrumental,
the length of which is of the order of hundreds of years,
historical, of the order of thousands of years, and geological,
. of the order of hundreds of thousands of years. These
records show that features of the atmosphere change on all
‘the time scales represented in them {e.g., Robinson, 1971),.
Thus it would appear at first that it is not poésibie to
distinguish between "fast" variations in yearly averages,
which shoﬁld be averaged out when defining a ciimate, and’

“sloW" variations, which should be considered as "changes



of ¢limate". Still, the geological record seems to indicate
that the transitions between considerably colder periods (ice
ages or glacials) and warmer periods ("normal” climates or
interglacials) occurred over time spans about ten times

shorter than the duration of the relatively steady cold or

warm weather respectively. This suggests what we shall adopt
here as our operative definition of cliﬁate, viz., the preva-
lence of either warm weather (as we experience it today) or
of cold weather (to mean a difference of the order of ten
degrees centigrade in yearly average below the one recorded
in the present).

We turn now to the question of which features of
atmospheric phenomena are "most important". Certainly tempera-
ture is one of them, not only because its changes left deep
traces in the geological record (glaciations in temperate
zones, pluviations in the tropics -- SMIC, 1971), but also
because it affects all conditions of life and because it is
directly linked to the major thermodynamic and dynamic
processes in the atmosphere which determine climate and
its changes. Also, humidity, wind direction and intensity,
cloud amount, precipitation, all play a major
role in determining what is perceived as weather and hence
should be time-averaged (and, possibly, space—avergged)
into climate. Moreover, it is not only the averages of
these quantities, but their day-to-night and season-to-season

contrast that enters our intuitive concept of a climate.



Thus, at least their variance should be included in a more
complete mathemaﬁical model for climatology.

In this artiéle we shall treat a very simple model,
based on the work of Sellers (1969) and of Schneider
and Gal-Chen (1973); we hope that the results will in
themselves be of some significance for climate theory, as
well as providing insights for devising and analyziné more -
‘complex modelé. 

In Section 2 the model to be studied is described;
the physical principles on which it is based,:as well_aé
the empirical data it uses are discussed.

In Section 3.we discuss the work of different authors
on similar models; the similarities and differenégs between
their results are'pointed out and the issues arising from
these results are outiined.

In Section 4 we compute numerically the mo@el's

steady-state solutions of physical interest, i.e., those

[‘ yvielding positive absolute temperatures. Three such

solutions, corresponding to three distinct climates of our
planet, are‘obtained: one correspondsfto the currént climate,
the second to an ice age; the third to'a completely‘ice—
'_covered earth. 1In this section we also‘explorg the‘effect
of certain modifications in the model on the number of
steady—state solutions.

In Section 5 the notion of stability for the soiutions

obtained in Section 4 is defined precisely; it is investigated



using a combination of analytical and numerical techniques.
The results are that the present climate and the ice~covered
earth are stable, whereas the ice age of the model is
unstable.

In Section 6 the effect of chénges in the solar radia-

tion on the number and stability of steady-state solutions.

is studied. The main result is that for a sufficient
decrease in the solar radiation (about 2%), the glacial and
the interglacial solutions disappear, leaving the ice-

covered earth as the only possible climate.



2. The Model

The model chosen for study is a zonally-and-vertically
averaged energy-balance climate model. This means that
quantities in the model are averaged over longitude and
height, leaving colatitude ¢ as the only space variable.
The term energy balance means that the model is essentially
based on the energy equation of fluid dynamics and has sea-
level temperature u as the onlyldependent variable. The

equation governing the model is

(la) C(¢)ut = Ri(¢,u) - R0(¢,u) + D(d,u,u )

o o0
C is the heat capacity of the atmosphere, land and water

masses; Ri is the heat abhsorbed from incoming radiation,

(1b) R, = Q(¢) [1 - alp,u)] ,

.
where 0 is high-frequency solar radiation and o is the
reflectivity (albedo) of the land and sea surface; RO is

the heat lost in outgoing low-freqguency planetary re-

radiation reaching outer space,

{(1c) R0 = c(¢,u)cu4 ;

and D describes the redistribution of heat on the surface

of the planet by conduction and convection,

(10 D= g aplsin ¢ k(bwlu .

The coefficients and forcing terms in this model

-5-—



represent yearly averages.of the corresponding guantities and
therefore do not depend explicitly on the time t. Averaging
the daily and seasonal variations seems justified, since the
time scales in which we are interested in our -investigation
are of the order of hundreds and thousands of years. The lack
of explicit dependence on time has the advantage that the

model admits, as we shall see, steady-state solutions, ut = 0,
which we define to be its climates. The purpose ¢of this work
is to study analytically and numerically the number of these
climates and their stability under perturbations. |

The first model of this type, in finite-difference form
and without time dependence, was developed by Sellers (1969).
The differential formulation is due to Faegre (1972); time
dependence was introduced by Dwyer and Petersen (1973} and,
independently, by Schneider and Gal-Chen (1973). Dwyer and
Petersen also gave the outline of a systematic derivation of
(1) from the energy equation of fluid dynamics, mentioning the
main assumptions involved. An even simpler model has been
proposed by Budyvko (1969}: in it the diffusion term D is
replaced by a nondifferentiated, linear term in u, and the
albedo is a simple step function of u only; this model was
also discussed very thoroughly by Leith (1974), and by Held
‘and Suarez (1974).

One of the main features of the model (la-d} is the form
of the albedo,
(2a) o = {b{e) - cylu + (u—c23(¢)—um)_]}c '

where the meaning of the subscripts ( )_ and { }c is

-H=-



given for a generic qguantity h by

(2b) : h_ = min {h,0}
and

0.25, h < 0.25,
(2¢) h, = h , 0.25 < h < 0.85,

0.85, 0.85 < h '

The subscript ¢ stands for cutoff; the cutoff given by (2c¢)
embodies the observed minimum and maximum values of surface
albedo.

Snow and ice have highér reflectivity than bare ground
or water; since in regions of lower yearly average tempera-
ture the snow and ice cover persisfs for a longer fraction
of the year, at lower temperature the yearly average albedo
is higher; this is expressed in the monotoniéally decreasiﬁg
dependence of o on u. Further, the plausiblé assumption is
made that, above a certain yearly average temperature u. s
no snow or ice will be present at any time of the year;
therefore o is independent of u for u-c,z > u_, as seen
from (Za) and (2b). The term czz(¢).gives the difference
between sea-level temperature u and ground temperature, ﬁ—czz.

A serious drawback of the modei is that it doés not
include. the effect on the albedo of clouds, atmospheric
turbidity, relative humidity, and vegetation. The optical

properties of these factors and their relationship to surface



temperature are less well known and cannot be easily para-
meterized in a model as simple as the one at hand.
The factor c¢ in the outgoing infrared radiation

term R0 ;
6
(24) ¢ =1-m tanh (c3u ) .

expresses empirically the "greenhouse effect", i.e., the
screening by the atmosphere, in particular by the clouds

in it, of infrared radiation from the earth, thus preventing
part of it from reaching outer space. HNotice that ¢ decreases
as u increases; this indicates that cloud formation, and

hence the opacity of the atmosphere to low-frequency radiation,
increases with increasing temperature.

The function k{(¢,u) in (1d) has the form

Cy —cs/u
(2e) k(¢,u) = k(d)+k,(9)g(u) . g{u) = —w e = £'(u);
u
kl(¢)u¢ is sensible heat flux in the atmosphere and in the
oceans, whereas k2(¢)g(u)u¢ is latent heat flux in the

atmosphere. Here kl(¢), k2(¢) are eddy diffusivities,
which parameterize convective transports; true conduction
is known to be negligible in the atmosphere-ocean system
on the planetary scale. In the original Sellers model,

k(¢,u) had the form

k‘.‘bru) = ks(fbru) - vi{ua,)- (utf(u)) .,

¢

where v is, for the purposes of modeling heat flux, mean

meridional velocity. The theoretical shortcomings of the

-g-



additional term V-(u+f(u)) were pointed out by Robinson
(1971) ; the practical difficulties in giving a good para-
meterization are discussed by Sellers (1973).

Numerical studies of Schneider and Gal-Chen (1973)
indicate that results with the original Sellers model.
{denoted by them as (8)) were very similar to those with
the model adopted here (denoted in their work as (sSV)),
provided that the numerical.values of k and kS were
properly chosen {see the discussion on the determination
of coefficients further on). . Furthermore, the recent
work of Gal-Chen and Schneider (1975) shows that there are
theoretical grounds on which the formulation (SV) with zero
maridional velocity is to be preferred. These considerations
will be touched upon later, in a different connection.

The constants cj 1 <4 <5, um r 0, m , as well as
the empirical functions C(¢), Q(d), b(d), z(¢), k,{¢) and
k2(¢) are made to fit currently measured values of temperature}
radiation, elevation, albedo and heat flux. The functions'
Cc(¢), Q(¢) and 2(¢9) are determined directly from measurements.

The function b{($) and the constant in (2a) were

€1
computed by Sellers (1969) -so as to fit existing albedo:
measurémenfs in the northern and southern hemisphere.

The constants m and Cs were also computed by Sellers, so
as to fit empirical data on Ry; 0 is the Stefan-Boltzmann

constant. The form of the function g{u) and the constants

Cyr C5 appearing in (2e) are derived from certain physical



considerations having to do with the thermodynamics of wet
air and from corresponding empirical data (see Handbook of
Meteoroclogy, 1945). The functions k1(¢),.k2(¢) are computed
from measured data on sensible and latent heat flux, kl(¢)u

¢

and k2(¢)g(u)u ; respectively. These computations are

o
based on the measured temperature distribution, denoted
hereafter by

u = a(¢) '

which will be called the data climate. Note that we use

here the term "climate" only for convenience, instead of the
lengthier "temperature distribution”; U(¢) is not necessarily
a steady-state solution of the model; we return to this point
in Section 4.

The measured data are available at intervals of 10°
latitude and are given in Table 1. Since the previously
quoted authors used finite-difference formulations with a
fixed 10° grid (except Faegre (1972), who used a 5° grid),
these data were sufficient for their numerical work. In our
numerical work, however, variable grid size was employed,
and the 10° data were accordingly fitted by smooth functions.
In fact, in order to have an additional check on the well
posedness of the model‘(i.e., the continuous dependence of
the solutions on the data, commonly referred to in the
meteorological literature as sensitivity), two forms of curve
fitting were used: (i) by Bernstein polynomials, and (ii) by

cubic splines. Results with the two forms of curve fitting

-10-



were indeed very similar (see Table 2).
In this work we only consider symmetric solutions of (1);
all data are symmetrized with respect to the eguator,

¢ = n/2. For such data the appropriate boundary conditions

are
{3a) u¢(0) =0, (3b) u¢(w/2) =0 ;
in the symmétric case these are equivalent to u¢(0)= u¢(ﬂ)= 0.

We feel that the slight asymmetry between the northern
and scuthern hemispheres could hardly have had a major
influence on climatic change. Indeed, the circulations
of the two hemispheres are practically separated from each
other by fhe intertropical cénvergence zone, which acts with
respect to our model as an insulating wall. The approximation
involved in placing this wall at the egquator is no worse.
than other approximations in the.model (see.alsb Held and
Suarez, 1974). A further reason for symmetrization.will

become apparent in the next section.
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3. Previous Results

Budyko (1969) and Sellers (1969) used iterative numeri-
cal techniques for constructing solutions of their time-
independent models. They'explored a range of values of the
parameters appearing in the model, especially of the solar
radiation 0, and obtained one solution for each set of
values. These solutions did not depend smoothly on the
parameter values; in several instances, small changes in the
parameters led to large changes in the solution. For
instance, an increase or decrease of a few percent in Q
resulted in temperature changes leading to extensive melting,
or significant expansion of the polar cap, respectively.

Faegre (1972) obtained for a certain given set of values
of the parameters five distinct solutions of his variant of the
Sellers time-independent model. Two of these were highly
asymmetric, and disappeared when c(¢,u) in (1) was taken
as constant; hence Faegre considered these solutions to be
spurious and unphysical. It was the desire to eliminate a
priori such solutions that suggested the choice of symmetric
coefficients. Faegre's formulation of the albedo is slightly
different from that of Sellers, mainly in that the minus
subscript in (2a) (i.e., the cutoff of a{¢,u) at um) was
missing.

The three symmetric solutions of Faegre could be

described as corresponding to the present climate, an

-12~



ice-age climate (about 15° C colder on the average than the
previous one), and a completely ice-covered earth (at an
average temperature of about 175 K). This last climate
was also the one obtained by Sellers when decreasing the
solar radiation by more than 4%.

These results raised the question of the transitivity
of the earth's climate, as formulated by Lorenz (1968, 1970).

In Lorenz's terminoloéy, a time-dependent system of equations

is transitive if its solutions have a unique eqguilibrium
statistic, that is, if all solutions, independently of
initial conditions, have the same infinite time average;

otherwise the system is intransitive. Lorenz pointed to the

existence of certain transitive systems which possess a

property called by him almost intransitivity, i.e., that

of having at least some solutions whose averages over long,-
but finite, time intervals are different -- these solutions
then would altérnate in time between the different averages.
He raised the possibility that the atmospheric system is
almost intransitivé: in other words, that the known climate
changes in the past were not necessariiy caused by changes
in external conditions (like solar radiation), but rather
were an effect of the normal evolution of the system.
Schneider and Gal-Chen (1973) investigated the question
of transitivity for enefgy—balance climate models by
formulating time-dependent versions of the Budyko (B),

sellers (S and SV) and Faegre (F) models. They solved

..l3_



numerically the initial-value problem governing these time
dependent models for a large range of initial conditions.
The models were found to be intransitive, rather than almost
intransitive: every Solution tended as t + ® to one of
two (or more, in the case of the (F) model) equilibrium
solutions; viz., the equilibrium statistic of the system
governing each model was not wnique, and no spontaneous
transition from one egquilibrium to another was possible.
The two equilibrium solutions obtained for all models
corresponded to the present climate and to the previously
mentioned completely ice—covered earth.

The eguilibrium solutions, at least for the (S) and
(sV) models, proved stable under rather large perturbations
in both initial conditions and parameters. That is, solu-
tions which differed in their initial conditions from one
of the limiting "equilibria" by as much as + 18 K tended
as t + < to the "equilibrium" near which they started.
Also changes of + 1.5% in the solar radiation led to limit-
ing equilibria which differed by only a few degrees from
the unperturbed ones. However, changes of more than - 18 K
in initial conditions or - 1.5% in solar radiation led from
the "present climate" to the "ice-covered earth". The latter
seemed to be the most stable climate in all investigations
mentioned above.

Schneider and Gal-Chen did not obtain a limiting steady-

state solution which would correspond to a true ice age as

-14-



recorded in the planet's history. Their results with the
time-dependent version of the Faegre model (F) were rather
different from those with the two versions'of the Sellers
model (S and SV), especially with regard to the stability
of steady states under perturbations.

Contrary to the results of Schneider and Gal-Chen,
Dwyer and Petersen (1973), with a time~dependent model
essentially identical to Schneider and Gal-Chen's (S),
obtained sclely one type of limiting steady state, that
corresponding to the "present climate". They used only the
data climate u = u(¢) as initial conditions, but varied
the solar radiation Q. The actual values of the limiting
equilibriu%;dependeﬂ of course on the values of Q used,
but slight changes in Q yielded only a difference of a few
degrees between the average temperature of the equilibrium
and that of the data climate; no "deep freeze" equilibrium
was obtained..

These results seemed to be interesting enough in order
to warrant further study of energy-balance climate models.
As indicated in the previous section we chose to investigate
symmetric solutions of the (SV) model of Schneider and
Gal-Chen, and of some wvariations thereof, including the (F)
model. We hope that this study will add as much light and
as little heat as possible to the climate question (dackson,

1962).

-15-



4. Steady-State Solutions

We turn now to the mathematical theory of equation (1).
Introducing the new space variable x = 2¢/m, we obtain the

initial-and-boundary value problem (IBVP)

e o it S 9 I TRt (o)l fa) gy 10T
C(x)‘ut = (?) ;‘fm % s1in P [kl(X)+k2(X)g(u) ]uX

- 0u4[l - m tanh (c3u6)]
(4)
+ uQ(x) {l-b(x)+cl[um+ (u-¢,z(x) —um)_]}c '

0 <x<1l, 0 <t,
(5a) u (0,t) = u (1,£) =0, (5b) ulx,0) = u(x) ,
where (4) is a nonlinear parabolic partial differential

equation (PDE}. Here g{(u) is given by (2e}, u=1

(its significance will appear later, in Section &) and

) = 0.009, ¢, = 0.0065 deg m *, cy= 1.9 x 107> deg”?,
(6} Cy = 6.105x0.75xexp(19.6)Xl03dyn deg cm-z, Cg= 5350 degq,
o = 1.356x10""cal em “sec”'deg™?, m = 0.5, u_= 283.16 deg.

Mesh data at 10° latitude for C(x), kl(x), kz(x), Q(x), bi(x),

z(x) are given in Table 1. The units of the constants and

-16-



mesh data are chosen such that the common units of all terms
in (4) are cal cm_zsec—l.

The first step éf the investigation is to find steady-
state solutions of (4, 5a) in the range of physical interest,
aﬁd to study their dependence on changes in the model. We
consider therefore the steady-state equation obtained from (4)
by setting u, = 0. After some rearrangement we get the

following two-point boundary-value problem (BVP) for the

system of ordinary differential equations (ODE} :

(7a) u. =v ,
X
- k! (x)+k. (x)g(u)
- - (2 F{x,u) 1 TXy, - 1 2
4(7b) ve = - 7 gy~ zleot 3V K (x,q) v
k,(x)g' (u) ‘
- zk(x o v2 P 0 <x <1,

(8) v(0) = v(1) = 0 ,

where

(7¢) k{x,u) = kl(x) + kz(x)gCU) '

(74) F(x,u) = uQ(X){l - b(x}+ cl[umf (u—czz(x)—um)_]}C

- ou?[1-m tanh (c3u6)] )

‘We use shooting (Isaacson and Keller, 1966, Keller, 1968)

as the numerical procedure to6 solve (7, 8): equations (7a,b)

-17-



are solved with initial conditions

(9a) v{0) =0 , (9b)} u(0} = uy
for different values of uy denote by u(x;uo), v(x;uo)

the solution of the initial-value problem (IVP) (7,9) in

An iterative scheme is then used to obtain those wvalues

of u which satisfy
{10} v(l;uo) = 0 .

For these values of u, the solution u(x;uo), v(x:uo)

of the IVP (7,9) is also a solution of the BVP (7,8).

To obtain numerical solutions of prescribed accuracy to

the BVP (7,8) one has therefore (Keller, 1968} to achieve

the desired accuracy both in

(1) solving the IVP (7,9), and in

(ii) solving iteratively the nonlinear (finite) equation (10).
In solving numerically the IVP (7,9), we encounter the

difficulty that (7b) is singular at the origin, since

cot{nx/2) + » as x + 0. This singularity arises from the

nmathematical form of the diffusion term D of (1) in spherical

coordinates. It is easily shown, though, that (analytical)

solutions of the IVP exist and are unique at least "in the

small", i.e., for [uo—UOI <e, 0<x<§, arbitrary U,

and some 6, € » 0. The numerical difficulty of the initial

point being singular can be circumvented by using a variable-

step method.

-18-



It also turns out that in order to achieve prescribed
over-all accuracy ©f the numerical solution of (7,9) with
2 minimum of computational effort it is convenient to use a
variable-step variable-order mulfistep scheme. The ODE
solver we computed with was developed at the Lawrence Liver-
more Laboratory and is documented by Hindmarsh (1972,1974).
Both the Gear and Adams meﬁhods included in the package were
used and gave results identical to within the prescribed
relative accuracy, which was 10_7; however, the Adams method
was faster and was therefore used in most integrations.

The number of steps needed per solution (per value of uo)
for this accuracy was of the order of 100. It is of interest
to point out that near the singularity at x = (0, and near
the point where the jump discontinuity in the derivative of
fo,u(x}uo)) occurred, the order Qf accuracy chosen by thé
schemé was one and therstep size was very small, so that-a
proportionately larger amount of computation was done in the
neighborhood of these two points.

Thus every solution of (7,9) for given  Uy puts at

our disposal a value of the function v(l;uo).r accurate to

- ®
10 4, To find the zeros of v(liu,), we used the method of
false position (Isaacson and Keller, 1966). The criterion

for u, to be a root of (10) was lv(l:uo)l < 10“3.

In the units chosen, typical values of u are 0(103) and
‘ 2
of v are 0(107).
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The range of physical interest in which we searched for
solutions of (10) was 100K < u, < 300K (see also Faegre,
1972). Within this range, three sclutions of the BVP (7,8)
were found which are denoted by ul(x), uz(x), u3(x).

They correspond to
' 'u’l'(b)' = 247.74 K, u,(0) = 223.97K , u5(0) = 168.94 K.

The curve ux(l) vs. u{0), the zeros of which correspond
to the solutions Uzrly Uy is given in Figure 2. The
individual solutions ul(x), uz(x), u3(x) are plotted in
Figure 3.

It is customary and useful to characterize a climate
of the model, i.e., one of the solutions above, by its
average temperature, rather than by the temperature at the
pole. Therefore we introduce for functions ¢ the
averaging operator & by

2 2

&8¢ = f ¢ (x) sin (3%) d:/j sin (%) ax .

0 0
In particular, it is known (Isaacson and Keller, 1966) that

for functions ¢ symmetric about the equator, ¢(2-x) = ¢(x),
which also satisfy ¢x(0) = 0, and hence can be extended so
as to have period 2, the trapezoidal—-quadrature approximétion
of & is very accurate. Denote this approximation by &, ,

where A = 1/9 (corresponding to a 10° mesh); then we have

& u, = 287.76 K, &

A% = 267.44 K, &,u, = 175.43 K

AY2 AY3
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Clearly uy corresponds to an interglacial,'u2 to a glacial,
and u, to the ice-covered earth.

Note that for the data climate u = u(x)

u(0) = 247.36 K, &,u = 287.20 K ,

A0
which is indeed very close to the interglacial solution of
the model, uy (see also Figure 3). Though present cbserva-
tions were used to obtain constants and empirical.functions
in (4), no explicit term was added to ensure that (4) hold
with u, = '0; also the diffusion term, D, is of the same
order of magnitude as the radiation terms, Ry and R0 ¢ SO
that this is not the result of a simple radiation balance.
The same is\true of the work of all the previous authors
discussed in Section 3*; these authors, however, assumed:

at least implicitly that the data climate should be a
steady~-state solution of the model, or approximately so.
Since this result is not actually built into the model, as
far as we can see, we think it is rather remarkable that
'this class of models yields a steady-state solution, ul(x),

very close to the data climate, (x). Henceforth we shall

refer to u; also as the "present climate"” of the model.

In fact, Schneider and Gal-Chen (1973) did use an extra
"fudge coefficient", 0.97 < ¢g(x) < 1.03, in Ry in order
to achieve better agreement between the interglacial, or
"present" climate of‘their models and the data climate;

they obtained &ul = 287.06 K vs. &u = 287.30 K for the
(S) model.
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The mesh data, from which constants and émpirical
functions for the model were computed, are known to be in
error by possibly as much as 100% (Schneider and Gal-Chen,
1973); also some of £Maparameterizationsused in formulating
the model are questionable. Therefore we made a number of
computations in order to obtain information on the dependence
of the physically significant solutions, U;sU,sU5, ON varia-
tions in the model. The salient features of these coméuta—
tions, summarized in Table 2, are:

(1) The dependence of all these solutions on the
coefficients seems to be very smooth.

(2) The bounds on the albedo, 0.25 < a(x,u) < 0.85, are
essential for the existence of three steady-state solutions
in the physical range, 100 K < u{0) < 300 K: u, disappears
when the bound o < 0.85 is not enforced, and uy disappears
when the bound 0.25 < o 1is not enforced.

(3) The terrestrial radiation term RO' given by (1lc),
and its nonlinearity are essential for the existence of
physically significant solutions: if the term is set equal
to zero all solutions, uy Uy, Uy disappear; when it is

replaced by its average,

& c(x,ﬁ(x))oﬁ4(x) = const. ,

R A

0

u, only obtains; when R0 is replaced by a linear approximation,
Ry, = ol {U+d(uw-w)}e,clx,U(x)) , U= &0x) ,
then u,y only cobtains.
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(4) Our results with the model using the Faegre formula-
tion of the albedo are very similar to those using the Sellers
formulation; it is hard to explain the disagreement in thié
respect betwéen our results and those of Schneider and
Gal-Chen (1973), who, as mentioned in Section 3, obtained very
different results when using the two albedo formulations.

(5) The values of the empirical functions in the model
when fitting mesh data by (i) Bernstein polynomial approxima-
‘tion and (ii) cubic spline interpolation are pointwise rather
different for some of the functions (see Figure 1). Theh
solutions of (7,8) when using these different fits are, however,
very close. This alsoc supports the assertion in paragraph (1)
above, and shows that the uncertainty in the mesh data does
not affect in an important way the conclusions of the investi-
gation.

We explored another variant of the mddel, in which the
eddy diffusivity k{x,u) given in (7¢), corresponding to the
(V) model of Schneider and Gal-Chen, was replaced by k(x,u),
where 1 is the data climate; hence also g'(u)v in (7b) is
replaced by g'(d)u'(x). This variant, in accordance with the
terminology of Gal-Chen and Schneider (1975), would correspond
to an (SVC) model. We denote this modification of (7) by (7');

the solutions of (7',8) are

]
n
[}

ul(O) 247.55 K, u2(0) 227.76 K, u3(0) 169.44 K,

&L\u

268.60 K, SAH3

287.70 K,  &,u 175.44 K.

1 A2
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These are indeed very close to the solutions of (7,8),
especially for ul and Uy {see also Figure 3).

Gal-Chen and Schneider (1975) investigated the effect of
variations in the solar radiation uQ on the eqﬁator-to—pole
temperature gradient; they argue that this dependence should be
monotone, in fact monotone increasing. In the light of this
argument and of their results, model (SV) is superior to (S),
as already mentioned in Section 2; moreover, model (SVC) is
superior to (SV)}. Since (SV(C) is also more convenient to use
when investigating the stability of the steady-state solutions,
we shall work with it in the sequel; the corresponding form
of (4) we denote by (4'}, the corresponding form of (1) by (1),
and the corresponding form of (7) by (7').

For this model, additional computations were made outside
the range of physical interest. One more steady-state solution

was found; we denote it by u4(x), and it satisfies

u4(0) = -~ 185.99 K, 8Au4 = - 175,40 K .

Most probably there are no other solutions of the BVP (7',8)
at all. Indeed, the solutions of the IVP (7',9) become
unbounded as u, moves towards the ends of the range explored,
viz., -1330 K < u, < 300 X; i.e., u(xjuy) » +e as u, approaches
the ends of the interval above (see Figure 2).

We would like also to point to the fact that some of
the modifications of the model which have three physical

steady states yielded numerical values of the latter consider-
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(see Table 2); however, it was the

ably higher than u ,uz,u

1 3
qualitative feature of the number of solutions and their
approximate pésition with respect to each other that was of
interest in our investigation: the average temperature of
a given solution of any fixed model could be changed to
practically coincide with that of the solution uj of (4) to

which it corresponds by adjusting the values of the coeffi-

cients.
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5. BStability of the Steady~State Solutions

In the previous section we have shown that equation (4')
with the boundary conditions (5a}) has three steady-state
solutions of physical interest, u = uj(x), 1 <3 <3 1In
this section we shall study the stability of these steady
- states.

Let us concentrate on any one of the steady states above,
u = u,{x), where j is fixed. BStability of uj means that small

J

perturbations of Uy die out with time. More precisely, uy
! [+
is stable 1if, when taking any nearby state U, i.e., one

which differs little from uj '
¢ a .
(11) U= uj(x) + ev(x) .,

Q
say, where v is arbitrary and ¢ > 0 is not too large, then
the solution U{x,t;e) of (4'-5) with initial condition

[+]
U(x,0:;e) = U(x:e) tends to uj itself as t » = |

Let (4') be written symbolically as

(12) ut = N (u) ,

where we divided through equation (4') by C(x), 0 < Cm < C(x)

< Cy <=, and N{u) is the corresponding right-hand side. Take a
perturbed u, u = U(x,t,e), which is assumed to satisfy

the boundary conditions (5a) and the initial condition (11).

If such a solution of (12) exists for all &€ sufficiently small,

0 <e < e, , then the equations

0
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U (x,t58)-U (x,£;0) N(U(x,t;e))-N(U(x,t;0))

(12') t - ,
7 > £
0 < ¢ i EO ’
also hold, with U(x,t;0) = uj(x). Letting e+ 0 we
obtain the linearized eguation
(13a) v, = - Ljv '
. _ 0
where we define wv(x,t) = S U(x,t,e){€=0 and
(13) L, = - > N{U(x,tie))} ]~ = - > N(w] 1<j<3
J og i g=0 du u=uj R B

At this point, for the sake of simplicity, we shall
drop the subscript j, and u will thus stand for some uj r

L for the corresponding Lj.

Equation (13a) is linear in v and it has a unique solu-

tion v satisfying the boundary conditions
(13c) vX(O,t) = vx(l,t) = Q ’
and arbitrary initial conditions

. [+]
{13d) v(x,0) = vix) .

The solution may be found by the usual method of separation
of variables, or expansion in eigenfunctions (normal modes).

Consider

vix,t) = e_At wix)
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this v will be a solution of (13) with v(x,0) = w(x) iff
(if and only if) A is an eigenvalue and w is an eigenfunction

of L, i.e., iff the pair (A,w) satisfies the homogeneous

problem
{14a) Iw = Aw
(14b) WX(O) = wx(l) =0 .

We shall show that the operator L has sufficiently many
eigenfunctions, and that therefore any solution v of (13)

can be written as a series

® _, (k)
(15) vi{x,t) = X a e A t w(k)(x)
k=0

NG

where ( ) are all the solutions of (14). It is

clear from the derivation (12') of (13) and from (15) that
for the steady state u to be stable it is necessary that

k)

every eigenvalue h( of L have positive real part:

(k)

(16) Re A >0 .

This condition defines the so-called linear stability of u.
It has been shown rigorously in a few cases and it is believed

in many others that (16) is also sufficient for the stability

of u as we defined it at the beginning of this section, i.e.,
that linear stability implies nonlinear stability. In the
next section we shall give an argument which will make it at
least plausible that this is the case also for the problem

at hand.
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We turn now to the aﬁalysis of the eigenvalues of the
linear second—order ordinary differential operator L, which

we can write as

1
(17a) W = = =%y Pxw j, + alx)w .

Here p,q,r are determined by (13b) and by (4'):

(17b) r(x) = C(x) sin (—%5),
(17c) p(x) = (%)2 sin (—-;LE)-k(x,ﬁ) ’
(17)  g(x) = {0x) (cy) ov - dix,w)}/C(x) ,
with

¢, if 0.25 < a(x,u) < 0.85
(l7é) (cl)c. = and u(x)—czz{x)—um < 0,

0 otherwise,

C(X.u)ou4

2l

(17f) d(x,u)

0u3{4[l-m tanh(c3u6)]— 6me

u6[l-tanh2(c3u6)]}.

Clearly L thus defined is formally self-adjoint (Courant
and Hilbert, 1953, Birkhoff and Rota, 1969) under the
prescribed boundary conditions with respect to the inner

product

1
(18) (wl:WZ) = f f(x)wl(x)wz(x) ax .
_ 5 ,

Moreover, r,p are nonnegative and twice continuously differ-
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entiable on the interval I = [0,1], and 9 is piecewise contin-
uous on I. However, because of the singularity at x = 0 due to
the fact that r(0) = p(0) = 0, the usual Sturm~Liocuville theory
of self-adjoint operators (Courant and Hilbert, 1953, Birkhoff
and Rota, 1969) does not apply to L; this difficulty though
can.be._overcome and the theory can be_extended. . The crucial _
element in this extension is the observation that, because

of the boundedness of q, L is bounded from below in the sense

that, for any w satisfying (14b) for which (w,w} < «, the

inegquality

(19&) <W,wW> i K(wa) r

holds with some fixed constant K, K > min g(x) >-», independent
V<x<]
of w; here <w,w> is the Dirichlet integral corresponding to L,

1
(19b) <w,w> = (Lw,w) = f (pw§.+ rqwz) dx .
' 0

This result, together with an analysis of the nature of
the singularity at x ='0, are sufficient to show that indeed
L has a complete system of eigenfunctions, orthonormal with
respect to the inner product (18) (Birkhoff and Rota, 1969),
and that the eigenvalues of L are real and can be arranged

in an ascending seguence

—_— < ;\

(1) ) 3

(k) (1)

with X +w as k>, and K = A in (19). Hence

any solution v of (13) can be written as a series (15).
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Therefore the stability question for the steady state u

reduces to determining whether

(16 ') U

r

in which case u 1is stable, or whether the opposite holds,

in which case u is mnstable.
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5a. Stability Criterion

In this subsection we shall show that it is possible to

(1) (1)

determine the sign of A without actually computing A .

We start with the wvariational characterization of the

lowest eigenvalue (Courant and Hilbert, 1953), A(l),
(20) h(l) = min ?z’:; = min <V L,V>

<V, V> <@ d {v,v)=1

(v,v)#0
i.e., A(l) is the minimum of the Rayleigh quotient R(v)

corresponding to L,

(21) R(v) = <v,v>/(v,V) ,

(1)

and the minimum is assumed for v = w . Indeed, (1l4a) is
the Euler equation for (20), and vx(l) = 0 is the "natural"
boundary condition for (20) in the sense of the calculus of
varigtions (Courant and Hilbert, 1953); also VX(O) = 0 is,
according to the theory of singular operators with the
properties of L, the only boundary condition at x = 0 which
ensures that, for solutions v of (14), <v,v> as well as {(v,Vv)
is finite. In particular, we conclude that the minimizing

= w(l), iz at least as smooth as the coefficients

function, v
of L, viz., it must have a piecewise continuocus second
derivative.

With these preliminaries we are able to prove the

following known
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Lemma . The first eigenfunction of L, w(l), is strictly

positive,

v >0, 0<x<1.
Proof: From the definition (21) of R(v) it is clear that
R([w' D)) = rew'Y)
where |y| denotes the absolute value of y. If w' had a
zero at some interior point Xy s 0 < Xy < 1, and wil)(xo)#o,‘

then the first derivative of [w(l)l would have a jump at

X = X,  which contradicts the smoothness of Iw(l)| as a

solution of the variational problem. If, on the other hand,

LD

wél)(xo) =0, 0 < Xy < 1, or (0) = 0, or w(l)(l) =0,

then, by the unigueness theory of linear ODE (Birkhoff and

Rota, 1969), it would follow that w(l)

(L)

the fact that w is a nontrivial solution of (14),

= 0; this contradicts

completing our proof.
Now we are ready to state our stability criterion, which

1

is part of the conclusion of the

A= k(l), w = w(l) be as above. Suppose

Theorem, Let L,
also that there exists a function v, as smooth as w,

nocnnegative, v > 0 on I, and satisfying

(22) v > 0 , vX(O) =0 , v{0) = 1 .

Then v (1) > 0 implies A > 0. Moreover,

(i) A >0 if either Lv Z 0 or vx(l) > 0, and

Hl

(ii) if Lv = 0 holds, then X>0, A=0, or A<0, according to

whether v (1) > 0, v (1) =0, or v (1} < O,
* ~33% x



Proof: The required results are easily read off from the
following seguence of eq _.ities obtained from the definitions

and by integration by parts:

1 1
A f rvw = Aw,v) = (Iw,v) = f -(pwx)xv + rqwv
0 0
e 101
= -pw Vv + f PW_ VY, + rgqwv
0 0
1 1
= PWV, + [ —(pvx)xw + rgvw
0 0
= (pwvx)(l) + (Lv,w) ,
where we used wx(O) = wx(l) = 0 and VX(D) =0 .
Note, This is essentially a comparison theorem, of the

type familiar from Sturm-Liouville theory {Birkhoff and Rota,

1969) .

The result under (ii) above is the stability criterion
which we shall use. For completeness we give here also the

following slight generalization as a

Corollary. Let L, A, w be as in the Theorem. Suppose Vv
satisfies the hypotheses of the theorem, except for that of
being nonnegative on I. Instead, let Xg 0 < X < 1, be
the first zero of v,

vix) >0 on 0 < x < Xq

Then A < 0.
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Proof: The result follows from the saﬁe integration by
parts carried out in the proof of the theorem, except that
now the upper limit of integration has to be X rather than
l, and we use V(xo) = 0 rather than wx(l) = 0 in passing
from the second to the third line. Moreover, since.v(x) >0
for x < Xg « and v is continuously differentiable, Vx(xo)i 0.
Furthermore, it cannot be that both Lv = 0 and vx(xo) = 0,

since then we would have, by uniqueness, v = 0, which

contradicts v(0) = 1. This completes the proof.
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Bb., Stability Results

In this subsection we shall apply the stability criterion
obtained in Subsection 5a to the steady-state solutions uj ’
1<3 <3

For this purpose we construct functions Vj by solving

(22) with the equality sign, and with L = Lj given by (13b)

and (17). The results, obtained with a relative numerical

accuracy of 10_7, are that

(a) v. , j =1,2,3, is positive, v., > V. > 0, v, > 0.5 ;
. ad .

vj(l) >0 for j=1,3, whereas = vj(l) < 0 for j=2.

The actual computed values are

d_
dx

- _ a_ _
vz(l) = -3.24312, XV3(1)—4°31025,

Vl(l) = 2.39970, 3

a_
dx
These values of the derivatives at % = 1, together with the
values of Vj, are sufficiently bounded away from zero in order
to conclude that the conditions of the theorem are satisfied
beyond the doubt of numerical uncertainty.

Hence the solutions representing the present climate and
the ice-covered earth are stable, whereas the so-called ice
age of the model is unstable. This result agrees with and
throws additional light on the results of previous authors, in
particular the time-dependent integrations of Schneider and

Gal-Chen (1973).
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Actually the stability computations were carried out

.also for the solutiocons of
(4") N‘(uj) =0, 1 <3< 3,

with

K
(23) N'(u) = (&2 9

——————— —— gin (E~§)'u
i sin{wx/2) ox 2 X

4
+ Q(X){l - B0+ Clu}c = ggou .

| where the subscript { }c is defined in (2c¢) and

2.2x107°, B.= &,b(x) = 2.85881,

K 0

0

il
It

&, k(x,u(x))

]

cg = &, c(x,ulx)) 0.61 ;
the corresponding linearization of N' is

. K
0oLt - - S22 Ko imx 2
(137) Lj B Nu(uj) - {n) sin{mx/2) 98x 31n( 2] X

' 3
where

u. < 0.85,

1 173

c; if 0.25 < 1-B+C
(cl) = <
0 otherwise

 This is, according to the experiments carried out in Section 4
{(see Table 2), the simplest form of (4) which still yields
approximately the same éteady—state solutions in the physical

range of interest. The results are the same, i.e., u, and u,

1
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are stable, and u, is unstable. It seems therefore quite
plausible to conclude also that for all models, lying in some
sense between (4) and (4"), the steady states corresponding
roughly to Uy Uy, Ug have the same stability properties as the
latter. Combining this remark with the one made at the end of
Section 4, it seems_that we have a result about the_ stability _
of the steady states for a certain type of energy-balance model,
rather than just for one specific model of this type. It seens
desirable to define precisely the type of model having these
properties, and we intend to try to do so in further work.
Having thus determined the stability properties of the
steady states of (4'),we want to obtain some additional infor-
mation by actually computing the lowest eigenvalues Agl), and
corresponding eigenfunctions wélh of Lj + 1 < 3j < 3. The eigen-

values are

9 9 (L

1 am
] Aé )= ~5.87662x107°, A}
(1)

and the eigenfunctions w. ', 1 < j < 3 are plotted in Figure 4.

A(l)= 3.95390x10 = 5.13587X10—9,

1

The method for computing (k;l),w;l)) was again shooting,

s

|~
7]

time with respect to the parameter X. That is, equation (l4a)

o]
&

L = Lj , Was solved for w(x;)) with initial conditions
w(0;x) =1, w(0:2) =20,

and with different walues of the "shooting parameter” A. The zeros

of the function vx(l;k) were then computed by regula falsi to

within an accuracy of 10"%. The over-all relative error in

computing solutions of the initial-value problem was 10—7,

as before.
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Notice from (15) that

_ (1)
T= 177

is a characteristic decay or relaxation time for the solution
U(x,t;e) of (12) to u = uj(x). This time is of the order

of 10 years for all j,

T, = 8.0 years , Ty = 5.4 years,, T3 = 6.2 years.

In this context it is remarkable that Schneider and Gal-Chen
{(1973) state that, in one of their integrations, the solution
of (4) with initial data ;(x) = u(x) and p = 0.984, after
dropping rapidly by about 12 K in average temperature, was
nearly constant for.about 50 years of simulated time, and
then finally dropped to a steady state close to our u3(x).
From our results it becomes clear that the solution mentioned
abo&e hovered for a time of the order of Té around Uy o but
could not persist there indefinitely because of the instability
of uz‘, and finally attained usy which was stable.

It also follows from (13) and- (14) that multiplying C(x)
by a constant K > 0 will result in Tj, 1 <3 < 3, being
multiplied by k. A similar statement holds also for the
nonlinear equation (4), since such a constant «k Jjust
corresponds to a different scaling of the time t (see also

Schneider and Gal-Chen, 1973). Experiments in determining

* . . .
We shall see in the next section that T2 increases with

decreasing u.
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characteristic response times for solutions of (4') were
done by Dwyer and Petersen (1973), who used two heat capaci-
ties C(x), Dboth larger than that used by Schneider and
Gal-Chen (1%73) and by us. It seems, however, that upon

decreasing 1y in (4) to u = 0.98, as they always toock

Q .
__ufx) = G(x) in (5b), the average temperature of the solution

ui{x,t) dropped rapidly at first, and only slowly thereafter,
as indicatéd by Figure 2 in their article. Apparently this
slow decrease, which shows that their solution u(x,t) of (4')
was approaching a steady state close to our uz(x), was
interpreted by them as proving the nonexistence of a steady
state u3(x), which had been obtained in the work of Budyko,
Sellers and Faegre when decreasing u by a similar amount.
The influence of changes in 1 on the steady-state
solutions uy v 1 <3j< 3, of (4") will be investigated in
the following section. At‘this point we only want to mention
that, whereas a nultiplicative factor « in C(x) affects
A

the magnitude of and hence of Tj , our theorem shows

that it does not affect the actual stability of uj ¢ l.e.,

the sign of J\:(il).
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6. Perturbed Steady-State Solutions and Bifurcation

It is clear that steady-state solutions of (4') could
not spontaneocusly evolwve into each other. More piecisély-
the solution of (4'75a) with initial condition u{x,0) = uj(x);
j =1,2,3, is u{x,t) = uj(x). Moreover, it stands to
reason that, for any physical initial condition, &(x) > 100 K,

we would have

lim u({x,t) = u.(x) ,
oo ]
with j =1 or j = 3, since uz(x) is (linearly) unstable,

whereas ul(x), u3(x) are (linearly) stable (and u4(x) <-170K
< 0).

Thus, to explain physical ice ages, one has to consider
perturbations in the parameters appearing in equation (é').
Such perturbations would presumably be caused by physical
mechanisms not included in the model. The most likely
candidate for such a role is 1y, which up to now was taken
to be unity. Indeed, many ice-age theories rely héavily on
a change, however small, in the amount of solar radiation
reaching the lower layers of the atmosphere (sMIC, 1971,
Beckinsale, 1965).

Some attribute the aésumed decreases in solar radiation
to changes in the parameters of the motions of our planet
(Milankovitch, 1930), others to airborne volcanic dust
due to an increase in volcanic activity (Fuchs & Patterson, .

1947), and so on. There has also been concern about a
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possible climatic catastrophe being imminent because of the
increase in the guantity of industrial pcllutants in the
atmosphere (Rasool and Schneider, 1971).

To investigate the effect of such changes in the model

at hand, the curve ux(l) vs. u{0) was recomputed for

different_ values _of 1, in particular with a view to obtain-

ing ul(x;u), uz(x;u). One important result is that these

two solutions coallesce for
uc = (.98152

and disappear entirely for u < Moo The bifurcating solution

u = uc(x) = ul(x;uc) = uz(x;uc) was computed with over-all

relative accuracy 1077 and _|ué(l)| < 5x1077.  The

(u(O),ux(l))—curve corresponding to u Mo is given in Figure 5;

notice that it is very flat near u(0) uc(O), which makes
it difficult to compute uc(x) accurately.

Further computations were carried out for u = 0,982,
0.985, 1.01, 1.02, 1.03, 1.04 and 1.05. The results of these
computations are summarized in Table 3 and plotted in Figure: 6.
It is quite interesting that, whereas for u > 1.0 the
dependence of uj(O), 8Auj(x), i=1,2, on p is almost linear,
this dependence is definitely quadratic near u = My 7 the
latter is in good agreement with the general theory of
bifurcation for nonlinear parabolic problems (Hoppensteadt
and Gordon, 1975). According to the theory, there exists

in principle the possibility that, instead of disappearing

at y = Mo » the two solution branches ul(x;u), uz(x;u) could
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merge into one periodic solution u,, (x,t50) for u < M
This possibility was not borne out, however, by the time-
dependent computations of Dwyer and Petersen (1973), and of
Gal~-Chen and of Schneider (1973, 1975); we did not investi-
gate it further.

Concerning the problem of the pole-to-equator tempera-

Au ] u. (l u. 0 r 1 < 'I < 3

as discussed by Stone (1973) and Gal-Chen and Schneider (1875),

the curve Auj = Auj(u), j = 1,2, is particularly interesting.

We notice that

(a) the values of Aul lie below those for Au,

(b) the values of Au; are monotonically decreasing with u;

{c) the wvalues of Auz have a maximum for u somewhere between
u=0.985 and u = 0.99; |

(d) the dependence of both Aul and Auz on u, but especiallythat

of Au, , is very steep near u = Moo

1
Being aware of the limitations of the model, as pointed out
in Section 2,uwe'do not want to make extensive éomments
concerning these results, but only note them for comparison
with the results of other models and for further study.

We also studied the stability of the solutions u = uc(x)
and u = u3(x;uc). Repeating the construction indicated at

the beginning of Subsection 5b for v = Ve and v = v, , where

3
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L. =—§-—N(u;uc)| ' j=¢,3,

Ju =1
] u 5

we cbtained the following results:

{a) vj + jJ =c¢,3, is positive, vj > V. > 0, Vj > 0.75 ;

(b) v (1) = - 7.56x10°3 , % v (1) = 4.23362.

B

Clearly u3(x:uc) is still stable, in fact (d/dx)v3(l;uc)
= 4,23 1is very close to (d/dx)vB(l;l.O) = 4,31, showing
the extremely smooth dependence of u3(x;u) on u.

The negativity of (d/dx)vc(l) would seem to point to
outright instability of uc{x), but in fact its small
numerical value indicates that, within the accuracy of the
computations, it is actually zero, i.e., uc(x) is neutrally
stable. Indeed, the mathematical theory of nonlinear
problems (Nirenberg, 1974) shows that for a bifurcation to
exist, as in the case at hand, the linearization

- - 9 A
Lo = ju N(u'wuc)lu:u

of the spatial, time-independent, operator N at the bifurca-

tion point (uc,uc) has to have a zero eigenvalue. This

followé from the infinite-dimensional generalization of the
one-dimensional fact that a function can be inverted in a
neighborhood of a point at which it has a nonzero derivative,i.e.,
that it has a unigque branch near such a point.

1)

We also computed the lowest eigenvalues Aé and

corresponding eigenfunction wgl) of Lj(uc) for j = ,3,
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by the shooting method described in Subsection 5b. In this
computation, the results on vj menpioned before were véluable
ip making a first guess for fhe shooting parameter A. The
coﬁputations yielded |

9

NES 11 \ (1)
c 3

= - 1.287x10 1" , = 5.07265x10

Again we notice that Aél)(uc) = 5.07><10"9 is very close to

2 ,(1)
A (1.0)

AP (1.0) = 5.13x107°, whereas AP = 0.axo”
Z 0.2x10"2 lél?(l.O) is practically zero, as it has to be
analytically.

It is clear by the continuity of A;l)(u) in the parameter
W that for u_ < u < 1.05 we have A{ >0, {50, and
lél) < 0, so that the interglacial and the ice-covered earth
are stable for the entire range of u explored, whereas the
" glacial is unstable for the same range §f H. Furthermore the
- ice~covered earth ié stable also for smaller U | |

There is one further point of view, which, while illumi-
nating the significance of the neutral stability of uc(x),
also argues for our linear stability analysis being sufficient
for cohcluding on nonlinear stability or instability of the
steady-state solutions of t4') corresponding to different
values of yu. This viewpoint has to do with the existence of
a variational principle for (4'). Indeed

N(u;pu) =0

is the Euler-Lagrange equation for the extrema of the functional
l h
J (u; u) =-f {pui +.rG(x,u)} dx ;

hére P, ¥ are given by (17b,c) and
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G{x,u) = f F(x,w) dw ,

where FP(x,u) is defined by (7d).
Clearly the stable solutions ul(x;l), u3(x;1) corres-
pond to local minima of J(u;l), whereas uz(x;l) is a local

maximum. As ul(X;U)' which is a minimum for p > Wy

 coallesces With'uéii?uf}-Which is a maximum for u BWHé",'ét'

H=1u, » a saddle point u = uc(x) obtains, whereas u3(x;pc)
is still a minimum.
This variational interpretation makes it very plausible

that solutions u(x,t:;u) of the "flow"

u, = N{u;u) ., B> Mg

with initial conditions near uj(x;u). that is at a finite

but small, rather than infinitesimal, distance from uj(x;u),

3= 1,2,3, will tend as t -+ « towards uj if uj is a minimum,
i.e., 3 = 1,3, and away from it when uj is a maximum, i.e.,
j = 2. Similarly, for u = Mo v solutions starting near

u3(x;uc) will still converge to Us but solutions starting

near uc(x}, though they may hover for a long time near u_ ,

o
since TyrTy > ® as u + Mg r will eventually move away from it,

along a negative slope of the saddle, and finally tend towards
the absolute minimum Us. This seems a rather satisfactory,
although heuristic, explanation of the results of the time-
dependent computations of Dwyer and Petersen (1973) and of
Schneider and Gal-Chen (1973), which we mentioned alreay in

Section 5.
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7. Concluding Remarks

We studied the zonally-and-vertically averaged energy-
balance climate model governed by eqﬁations (1-3); these
equations are based on simple parameterizations of albedo,
greenhouse effect and eddy diffusion of heat in terms of
yearly averaged sea-level temperature, which is the only
dependent variable of the model.

Three positive steady-state solutions of the model,
symmetric withfrespect to the equator, were found by
accurate numerical computations, and apparently no more
such solutions exist. These steady states can be identified
with an interglacial climate, approximating very well the
one prevailing presently on earth, a glacial climate, and
a climate during which the earth would be completely ice
covered. The climates obtained were only slightly changed
wﬁen making small changes in the numerical values of the
coefficients and when making certain changes in the functional
form of the model's egquations. However, the bounds on the
‘values the albedo can take were essential in order to obtain
these three climates; also linearizing the outgoing planetary
radiation resulted in a reduction of the number of solutions.

We then determined the stability of the time-dependent
'solutions of (1') under small perturbations about the model's
steady states. This stability was shown to depend on certain
properties of a comparison function, which was constructed

numerically.
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We found that the interglacial and the "deep freeze"
climate are stable, and that the glacial climate is unstable.
This means that the first two can obtain, at least approximate-
ly, as steady states in a physical system governed by egua-
tions very similar to (1-3}), but that the latter cannot;
the same is true about these climates as limiting steady
states for time-dependent numerical solutions of such
eguations.

We further showed how changes in an important parameter,
the average intensity of the solar radiation, influence the
steady-state solutions of the model. The dependence on this
parameter of all steady states was shown to be gradual and
smooth for increases of up to 5% and decreases of up to
about 2%. However for a critical value of the parameter,
equal to 98.15% of its present wvalue, the glacial and inter-
glacial climates coallesced and they disappeared entirely for
smaller values of the parameter, leaving the ice-covered earth
as the only possible stable, steady climate of the model.

This result is important, as it stresses the difference
between the stability of a steady state with respect to the
time evolution of a physical system governed by a given,
fixed eguation, and the stability of a steady state with
respect to changes in a parameter, which determines the
behavior of the system. For definiteness, let us call the
former internal stability and the latter external stability;

we have shown that the "deep freeze" is stable for our system
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both internally and externally, that the glacial'is unstable
in both senses, and that the interglacial, or "present

climate," is internally stable, but externally unstable.
The limitations of equations (1—3) as a model for the
description of the long-term behavior of the atmosphere-
-ocean—cryosphere system, and of energy—balance models
in general, have been discussed extensively. Because of
these limitations, we believe that the results above
should not be taken at face valué as statements about the
climate of our planet. These results, however,‘seem to
clarify the physical content and mathematical properties
of such models. Also, the methods used here could be
helpful in investigating other models, which will include
more elaboréte and reliable parameterizations of the
physical phenomena governing climate. . We further hope that
insight gained into the behavior of solutions of a certaih
type of model will advance the formulation of other models,
and that these will come closer to explaining past changes

in climate and predicting future changes.
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Table Captions

Table 1. Empirical functions appearing in equation (4).
The functions Q, b, z are based on data in Tables 1
and 2 of Sellers (1973). The functions C, kl ’ k2
are based on data provided by Dr. T. Gal-Chen (1974,
personal communication), and used in the (SV) model
of Schneider and Gal-Chen (1973).

Table 2. Influence of different modifications in the model's
equation (4) on the number of steady-state solutions
and the numerical values of these solutions. The
existing solutions are identified by the temperature
at the pole, uj(O), j=1,2,3. In case a solution is
missing, this is indicated by (-} in the corresponding
row-and-column location. S stands for the coefficients
being fitted by cubic splines, B for Bernstein poly-
nomials. A downward arrow (+) to the right of a comment
indicates that the egquation used in the numerical
experiments reported in all subsequent rows had the
feature pointed out in that comment. Otherwise comments
refer only to the row in which they appear. A left
arrow, X < y, means that the quantity x was replaced
in the equation by the quantity y. The entries given
with less than five decimal digits resulted from computa-

tions with lower precision than indicated in the text.
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Table 3. Dependence of the steady states ul(x;u);uz{x:u) on the
normalized average intensity of the solar radiation, .

The columns give u{0}, the temperature at the pole,

8Au, the average temperature, and Au = u(l) - u(0),

the pole—to—equétor temperature difference for uy and

for uz_fespgptively. The valqeslfor Mg T 0.98}5;82277

correspond to the bifurcating steady state u = uc(x).
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=55 -

¢ u C Q b Z ) kl k2
1deg | 1 deg k| 1 cal 10 %ca1 10" %¢cal deg t| 1072 cal ayn”
| -2, -1} -2 _af 1 1 m -2 -1 -1
cm  deg *Cm sec s CIu sec - sec
0 |247.3625| 500 0.426
5 | 2.192 [1204.5 0.47113 0
10 |252.0740| 1000 0.440
15 2.960 | 820.0 0.61988 0.9314
20 [262.5715| 1500 0.484
25 2.934 | 295.0 1.19933 1.9772
30 |271.2980] 4725 0.579
35 2.914 | 150.5 1.50214 3.4348
40 |278.9325| 5625 0.696
45 | | 2.915 | 193.5 1.51063 4.8316
50 |285.7530( 5812 0.804
55 2.868 | 301.0 1.69562 3.7359
60  |291.4090| 5813 0.894
65 2.821 | 261.0 2.02342 0.6903
70 |296.0815| 5625 0.961
75 2.804 | 133.5 3.20611 ~2.5401
80  {298.7815] 6000 1.003
85 2.805 | 156.0 4.80401 ~10.5975
90  1299.3510| 5625 1.017

Table 1




0

fu3(0) bu, (0) [ u; (0) Comments
168.941223.97({247.74| S, Sellers o, full eq., k = k{x,u)
169.44|227.76|247.55{ s, " " k = k(x,0)
- - 1{259.26} 5, " , Ry= 0.61lcu" [u-4(u-1)],
' k = k(x,0)
169.0 1222.6 |238.5 s, " k = kl(x) ¥
1170.0 {229.751238.04y B, " =~ T~ o ST -
-~ |229.2 [238.04] B, " o £ 0.85
168.0 - - S+, " m = 0 (no greenhouse
a< 0.85 + effect)
170.0 [222.0 (245.0 Sellers o, C,y= 0 4, m= 0.5 ¢
170.0 {222.0 - Faegre a +, o 7 0.25
170.0 [222.0 {255.0 a > 0.25 ¢
169.0 |232.0 [265.0 b(x) <« &Ab(x) = 2.85881 + 0
- - - c({x,u) - 0 (no infrared radiation)
160.0 - - v cot E%m « 0 (no singularity)
170.0 |250.0 |280.0 k(x,0) <« 8Ak(x,ﬁ(x)) = K0 = 2.2><ZL0—5 ¥
165.0 - - v cot —= « 0
_ _ - c(x,u) <« 0
- |2e7.36] - | Ry = g,clx ) 0w () = 5.63x1073
193.27|233.951277.79 R0 = 0.61 ou4 (8Ac(x,ﬁ(x)) = 0.61}) +
T TX v
190.0 |232.0 |280.0 v 3 cot R
197.0 |249.0 [|295.0 0(x) « 8AQ(X) = 8-333><10_-3
190.0 |238.0 |275.0 b(x) + 8Ab(x) + clczaéz(x) = 2.87334
192.88|232.08{276.06] k(x,u) <« K| = l.QSXlO_S

Table 2
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_Lg_.

u(0) u Au
u 1 2 1 2 1 2
0.98 - -
0.93151822 _ 235,70000 ! 277.66799 56.34051

0.982 236.527291234.88088 279.38752 1275.83481 55.77861| 56.66504
0.985 240.87022 231.3891b 282.14639 [273.08646 54.81134| 56.88813
0.99 243.742951229.55772 284.55785 (270.91707 53.94044) 56.89193
1.00 247.55398(227.76190 287.69906 [268.60379 52.80968| 56.62315
1.01 250.45869 226.8307? 290.06384 [(267.24989 h 51.98363| 56.15496
1.02 252.,94187|225,.95469 292,07316 |265.95849 51.30562( 55.68122
1.03 255.162371225.11901 293.86462 |264.71403 50.72267| 55.2245¢6
1.04 257.19489|224, 31508 295.50286 |263.50733 50.20914] 54.76978
1.05 JL259.08295 223.5452¢9 297.02543 1262.34160 49.74993Il54.32089

Table 3




Figure Captions

Figure 1

Comparison of curve fitting by (i) Bernstein poly-
nomial approximation, indicated by a dash-dot line, and by
(ii) cubic spline interpolation, indicated by a solid line.
Bernstein polynomials are not interpolatory and they are
variation diminisﬁing, i.e., they have the property of
smoothing out the data; this results in a rather poor
approximation. Cubic splines are not variation diminishing
and they are very good approximants.

Figure la

For a very smooth function, like u(x), the two approxi-
mation procedures yield curves very close to each other.
Figure 1b

For a function of large total variation, like k{x,u{x)},
the two procedures yield curves which can differ pointwise by
as much as 50 percent of the average value.

Figure 2
Numerically obtained values of u (lju,) as a function

of u, = u(0).

0
Figure 2a

Comparison of the results for equations (7), in
which k = k(x,u), with those for equations (7'), in which
k = k(x,0(x)); the results for (7) are indicated by a solid

line, those for (7') by a dash-dot line.
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Figure 2b

Results of (7') for -1330K '< u{0) < 300 K. Notice that
as uo = u(0) tends towards the.ends of the interval,
uX(l;uO) + +w, The solution u4(x), corresponding to the
negative root of this curve, uy = -186 K, does not have a
prhysical significance.
Figure 3

Comparison of the solutions of (4), indicated by a solid

line, with those of (4'), indicated by a dash-dot line. The

circles indicate mesh data for u = u(x).

Figure 3a

Values of the solutions uj(x): j = 1,2,3, for (4) and
for (4'). The respective values for j = 1,3 are practically
indistinguishable, whereas for j = 2  a slight difference

exists between the solution of (4) and that of (4').

Figure 3b
Values of the derivatives §§ uj(x), j=1,2,3, for (4)
and for (4'). The differences arellarger than in the function

values themselves.

Figure 4

The first eigenfuncticns, wgl)(x)‘, i=1,2,3 , of

- _ 9
Ly =~ %u N(u)lu=uj'

Figure 5
The function ux(l;uo), obtained by integrating (7')

numerically with p = Mg and with different values of Uy

ug = u(0) > 120 K.
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Figure 6

Dependence of the solutions uj(x;u), j = 1,2, on the
parameter pu. The two plots for uj(O), &Auj are very simi-
lar; the plot for Auj = uj(l)—uj(O) is rather different,
although it exhibits the same behavior in the neighborhood
of the critical point c. The circles indicate the values
actually computed, for u = uc , 0.982, 0.985, 0.99, 1.00,
1.01, 1.02, 1.03, 1.04, 1.05. The letter c distinguishes
the values of the plotted quantities uj(O) . &Auj . Auj
corresponding to the bifurcating solution u = uc(x).
Figqure 7

The bifurcating solution u = uc(x). Notice that the
ice line, which corresponds to u = 273 K, is at about 45° lat.

for this solution, i.e., an ice cover extending beyond this

latitude would eventually cover the entire earth.
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glacial (nearly identical to the present climate), a glacial,
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and a completely ice-covered earth. We consider also models
similar to the main cne studied, and determine the number of
their steady states. All the models have albedo continuously
varying with latitude and temperature, and entirely diffusive
norizontal heat transfer, The diffusion is taken to be non-
linear as well as linear.

We investigate the stability under small perturbations of

| £he main modells climates. -A.stability criterion is derived,

and its application shows that the "present climate" and the
"deep freeze" are stable, whereas the mocdel's glacial is
unstable. A variational principle is introduced to confirm
the results of this stability analysis.

We examine the dependence of the number of steady states
and of their stability on the average solar radiation. The main
result is that for a sufficient decrease in solar radiation
(about 2 percent) the glacial and interglacial solutions
disappear, leaving the ice-covered earth as the only possible

climate.
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